|
|
ScalarField | Real (const complexScalarField &) |
| | real part of a complex scalar field (real-space)
|
| |
|
ScalarFieldTilde | Real (const complexScalarFieldTilde &) |
| | real part of a complex scalar field (reciprocal space)
|
| |
|
ScalarField | Imag (const complexScalarField &) |
| | imaginary part of a complex scalar field (real-space)
|
| |
|
ScalarFieldTilde | Imag (const complexScalarFieldTilde &) |
| | imaginary part of a complex scalar field (reciprocal space)
|
| |
|
complexScalarField | Complex (const ScalarField &) |
| | convert real to complex scalar field with zero imaginary part (real-space)
|
| |
|
complexScalarField | Complex (const ScalarField &re, const ScalarField &im) |
| | construct complex scalar field fromr eal and imaginary parts (real-space)
|
| |
|
complexScalarFieldTilde | Complex (const ScalarFieldTilde &) |
| | convert real to complex scalar field with zero imaginary part (reciprocal-space)
|
| |
|
ScalarFieldTilde | O (const ScalarFieldTilde &) |
| | Inner product operator (diagonal in PW basis)
|
| |
|
ScalarFieldTilde | O (ScalarFieldTilde &&) |
| | Inner product operator (diagonal in PW basis)
|
| |
|
complexScalarFieldTilde | O (const complexScalarFieldTilde &) |
| | Inner product operator (diagonal in PW basis)
|
| |
|
complexScalarFieldTilde | O (complexScalarFieldTilde &&) |
| | Inner product operator (diagonal in PW basis)
|
| |
|
ScalarField | I (const ScalarFieldTilde &, int nThreads=0) |
| | Forward transform: PW basis -> real space (preserve input)
|
| |
|
ScalarField | I (ScalarFieldTilde &&, int nThreads=0) |
| | Forward transform: PW basis -> real space (destructible input)
|
| |
|
complexScalarField | I (const complexScalarFieldTilde &, int nThreads=0) |
| | Forward transform: PW basis -> real space (preserve input)
|
| |
|
complexScalarField | I (complexScalarFieldTilde &&, int nThreads=0) |
| | Forward transform: PW basis -> real space (destructible input)
|
| |
|
ScalarFieldTilde | J (const ScalarField &, int nThreads=0) |
| | Inverse transform: Real space -> PW basis.
|
| |
|
complexScalarFieldTilde | J (const complexScalarField &, int nThreads=0) |
| | Inverse transform: Real space -> PW basis (preserve input)
|
| |
|
complexScalarFieldTilde | J (complexScalarField &&, int nThreads=0) |
| | Inverse transform: Real space -> PW basis (destructible input)
|
| |
|
ScalarFieldTilde | Idag (const ScalarField &, int nThreads=0) |
| | Forward transform transpose: Real space -> PW basis.
|
| |
|
complexScalarFieldTilde | Idag (const complexScalarField &, int nThreads=0) |
| | Forward transform transpose: Real space -> PW basis (preserve input)
|
| |
|
complexScalarFieldTilde | Idag (complexScalarField &&, int nThreads=0) |
| | Forward transform transpose: Real space -> PW basis (destructible input)
|
| |
|
ScalarField | Jdag (const ScalarFieldTilde &, int nThreads=0) |
| | Inverse transform transpose: PW basis -> real space (preserve input)
|
| |
|
ScalarField | Jdag (ScalarFieldTilde &&, int nThreads=0) |
| | Inverse transform transpose: PW basis -> real space (destructible input)
|
| |
|
complexScalarField | Jdag (const complexScalarFieldTilde &, int nThreads=0) |
| | Inverse transform transpose: PW basis -> real space (preserve input)
|
| |
|
complexScalarField | Jdag (complexScalarFieldTilde &&, int nThreads=0) |
| | Inverse transform transpose: PW basis -> real space (destructible input)
|
| |
|
ScalarField | JdagOJ (const ScalarField &) |
| | Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (preserve input)
|
| |
|
ScalarField | JdagOJ (ScalarField &&) |
| | Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (destructible input)
|
| |
|
complexScalarField | JdagOJ (const complexScalarField &) |
| | Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (preserve input)
|
| |
|
complexScalarField | JdagOJ (complexScalarField &&) |
| | Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (destructible input)
|
| |
|
ScalarFieldTilde | L (const ScalarFieldTilde &) |
| | Laplacian.
|
| |
|
ScalarFieldTilde | L (ScalarFieldTilde &&) |
| | Laplacian.
|
| |
|
complexScalarFieldTilde | L (const complexScalarFieldTilde &) |
| | Laplacian.
|
| |
|
complexScalarFieldTilde | L (complexScalarFieldTilde &&) |
| | Laplacian.
|
| |
|
ScalarFieldTilde | Linv (const ScalarFieldTilde &) |
| | Inverse Laplacian.
|
| |
|
ScalarFieldTilde | Linv (ScalarFieldTilde &&) |
| | Inverse Laplacian.
|
| |
|
complexScalarFieldTilde | Linv (const complexScalarFieldTilde &) |
| | Inverse Laplacian.
|
| |
|
complexScalarFieldTilde | Linv (complexScalarFieldTilde &&) |
| | Inverse Laplacian.
|
| |
|
void | zeroNyquist (RealKernel &Gdata) |
| | zeros out all the nyquist components of a real G-kernel
|
| |
|
void | zeroNyquist (ScalarFieldTilde &Gptr) |
| | zeros out all the nyquist components of a G-space data array
|
| |
|
void | zeroNyquist (ScalarField &Rptr) |
| | zeros out all the nyquist components of an R-space data array
|
| |
|
ScalarField | exp (const ScalarField &) |
| | Elementwise exponential (preserve input)
|
| |
|
ScalarField | exp (ScalarField &&) |
| | Elementwise exponential (destructible input)
|
| |
|
ScalarField | log (const ScalarField &) |
| | Elementwise logarithm (preserve input)
|
| |
|
ScalarField | log (ScalarField &&) |
| | Elementwise logarithm (destructible input)
|
| |
|
ScalarField | sqrt (const ScalarField &) |
| | Elementwise square root (preserve input)
|
| |
|
ScalarField | sqrt (ScalarField &&) |
| | Elementwise square root (destructible input)
|
| |
|
ScalarField | inv (const ScalarField &) |
| | Elementwise reciprocal (preserve input)
|
| |
|
ScalarField | inv (ScalarField &&) |
| | Elementwise reciprocal (destructible input)
|
| |
|
ScalarField | pow (const ScalarField &, double alpha) |
| | Elementwise power (preserve input)
|
| |
|
ScalarField | pow (ScalarField &&, double alpha) |
| | Elementwise power (destructible input)
|
| |
|
template<class T > |
| Tptr | clone (const Tptr &X) |
| | Clone (NOTE: operator= is by reference for the ScalarField classes)
|
| |
|
template<class T > |
| Tptr & | operator*= (Tptr &in, double scaleFac) |
| | Scale.
|
| |
|
template<class T > |
| Tptr | operator* (const Tptr &in, double scaleFac) |
| | Scalar multiply (preserve input)
|
| |
|
template<class T > |
| Tptr | operator* (double scaleFac, const Tptr &in) |
| | Scalar multiply (preserve input)
|
| |
|
template<class T > |
| Tptr | operator* (Tptr &&in, double scaleFac) |
| | Scalar multiply (destructible input)
|
| |
|
template<class T > |
| Tptr | operator* (double scaleFac, Tptr &&in) |
| | Scalar multiply (destructible input)
|
| |
|
template<class T > |
| Tptr | conj (Tptr &&in) |
| | Generic elementwise conjugate for complex data:
|
| |
|
template<class T > |
| Tptr | conj (const Tptr &in) |
| |
|
template<class T > |
| Tptr & | operator*= (Tptr &in, const Tptr &other) |
| | Generic elementwise multiply for complex data:
|
| |
|
ScalarField & | operator*= (ScalarField &in, const ScalarField &other) |
| | Elementwise multiply for real data.
|
| |
|
template<class T > |
| Tptr | operator* (const Tptr &in1, const Tptr &in2) |
| | Elementwise multiply (preserve inputs)
|
| |
|
template<class T > |
| Tptr | operator* (const Tptr &in1, Tptr &&in2) |
| | Elementwise multiply (destructible input)
|
| |
|
template<class T > |
| Tptr | operator* (Tptr &&in1, const Tptr &in2) |
| | Elementwise multiply (destructible input)
|
| |
|
template<class T > |
| Tptr | operator* (Tptr &&in1, Tptr &&in2) |
| | Elementwise multiply (destructible inputs)
|
| |
|
complexScalarField & | operator*= (complexScalarField &, const ScalarField &) |
| | elementwise multiply
|
| |
|
complexScalarField | operator* (const complexScalarField &, const ScalarField &) |
| | elementwise multiply (preserve inputs)
|
| |
|
complexScalarField | operator* (const ScalarField &, const complexScalarField &) |
| | elementwise multiply (preserve inputs)
|
| |
|
complexScalarField | operator* (complexScalarField &&, const ScalarField &) |
| | elementwise multiply (destructible inputs)
|
| |
|
complexScalarField | operator* (const ScalarField &, complexScalarField &&) |
| | elementwise multiply (destructible inputs)
|
| |
|
ScalarFieldTilde & | operator*= (ScalarFieldTilde &, const RealKernel &) |
| | Elementwise multiply.
|
| |
|
ScalarFieldTilde | operator* (const RealKernel &, const ScalarFieldTilde &) |
| | Elementwise multiply (preserve inputs)
|
| |
|
ScalarFieldTilde | operator* (const ScalarFieldTilde &, const RealKernel &) |
| | Elementwise multiply (preserve inputs)
|
| |
|
ScalarFieldTilde | operator* (const RealKernel &, ScalarFieldTilde &&) |
| | Elementwise multiply (destructible input)
|
| |
|
ScalarFieldTilde | operator* (ScalarFieldTilde &&, const RealKernel &) |
| | Elementwise multiply (destructible input)
|
| |
|
template<typename T > |
| void | axpy (double alpha, const Tptr &X, Tptr &Y) |
| | Generic axpy for complex data types (Note: null pointers are treated as zero)
|
| |
|
void | axpy (double alpha, const ScalarField &X, ScalarField &Y) |
| | Real data Linear combine: Y += alpha * X (Note: null pointers are treated as zero)
|
| |
|
template<class T > |
| Tptr & | operator+= (Tptr &in, const Tptr &other) |
| | Increment.
|
| |
|
template<class T > |
| Tptr & | operator-= (Tptr &in, const Tptr &other) |
| | Decrement.
|
| |
|
template<class T > |
| Tptr | operator+ (const Tptr &in1, const Tptr &in2) |
| | Add (preserve inputs)
|
| |
|
template<class T > |
| Tptr | operator+ (const Tptr &in1, Tptr &&in2) |
| | Add (destructible input)
|
| |
|
template<class T > |
| Tptr | operator+ (Tptr &&in1, const Tptr &in2) |
| | Add (destructible input)
|
| |
|
template<class T > |
| Tptr | operator+ (Tptr &&in1, Tptr &&in2) |
| | Add (destructible inputs)
|
| |
|
template<class T > |
| Tptr | operator- (const Tptr &in1, const Tptr &in2) |
| | Subtract (preserve inputs)
|
| |
|
template<class T > |
| Tptr | operator- (const Tptr &in1, Tptr &&in2) |
| | Subtract (destructible input)
|
| |
|
template<class T > |
| Tptr | operator- (Tptr &&in1, const Tptr &in2) |
| | Subtract (destructible input)
|
| |
|
template<class T > |
| Tptr | operator- (Tptr &&in1, Tptr &&in2) |
| | Subtract (destructible inputs)
|
| |
|
template<class T > |
| Tptr | operator- (const Tptr &in) |
| | Negate.
|
| |
|
template<class T > |
| Tptr | operator- (Tptr &&in) |
| | Negate.
|
| |
|
ScalarField & | operator+= (ScalarField &, double) |
| | Increment by scalar.
|
| |
|
ScalarField | operator+ (double, const ScalarField &) |
| | Add scalar (preserve inputs)
|
| |
|
ScalarField | operator+ (const ScalarField &, double) |
| | Add scalar (preserve inputs)
|
| |
|
ScalarField | operator+ (double, ScalarField &&) |
| | Add scalar (destructible input)
|
| |
|
ScalarField | operator+ (ScalarField &&, double) |
| | Add scalar (destructible input)
|
| |
|
ScalarField & | operator-= (ScalarField &, double) |
| | Decrement by scalar.
|
| |
|
ScalarField | operator- (double, const ScalarField &) |
| | Subtract from scalar (preserve inputs)
|
| |
|
ScalarField | operator- (const ScalarField &, double) |
| | Subtract scalar (preserve inputs)
|
| |
|
ScalarField | operator- (double, ScalarField &&) |
| | Subtract from scalar (destructible input)
|
| |
|
ScalarField | operator- (ScalarField &&, double) |
| | Subtract scalar (destructible input)
|
| |
| template<typename T > |
| complex | dot (const Tptr &X, const Tptr &Y) |
| |
| template<typename T > |
| double | nrm2 (const Tptr &X) |
| |
| template<typename T > |
| complex | sum (const Tptr &X) |
| |
|
double | dot (const ScalarField &, const ScalarField &) |
| | Inner product.
|
| |
|
double | dot (const ScalarFieldTilde &, const ScalarFieldTilde &) |
| | Inner product.
|
| |
|
double | nrm2 (const ScalarField &) |
| | 2-norm
|
| |
|
double | nrm2 (const ScalarFieldTilde &) |
| | 2-norm
|
| |
|
double | sum (const ScalarField &) |
| | Sum of elements.
|
| |
|
double | sum (const ScalarFieldTilde &) |
| | Equivalent to dot() with a ScalarFieldTilde of all 1s (NOTE: sum(X) != sum(I(X)))
|
| |
|
double | integral (const ScalarField &) |
| | Integral in the unit cell (dV times sum())
|
| |
|
double | integral (const ScalarFieldTilde &) |
| | Integral in the unit cell (just fetches the G=0 component with correct prefactor)
|
| |
|
complex | integral (const complexScalarField &) |
| | Integral in the unit cell (dV times sum())
|
| |
|
complex | integral (const complexScalarFieldTilde &) |
| | Integral in the unit cell (just fetches the G=0 component with correct prefactor)
|
| |
|
ScalarFieldTilde | changeGrid (const ScalarFieldTilde &, const GridInfo &gInfoNew) |
| |
|
ScalarField | changeGrid (const ScalarField &, const GridInfo &gInfoNew) |
| |
|
complexScalarFieldTilde | changeGrid (const complexScalarFieldTilde &, const GridInfo &gInfoNew) |
| |
|
complexScalarField | changeGrid (const complexScalarField &, const GridInfo &gInfoNew) |
| |
|
template<typename T > |
| void | initZero (Tptr &X) |
| |
|
template<typename T > |
| void | initZero (Tptr &X, const GridInfo &gInfo) |
| |
|
template<typename T > |
| void | nullToZero (Tptr &X, const GridInfo &gInfo) |
| | If X is null, allocate and initialize to 0.
|
| |
|
void | initRandom (ScalarField &, double cap=0.0) |
| | initialize element-wise with a unit-normal random number (with a cap if cap>0)
|
| |
|
void | initRandomFlat (ScalarField &) |
| | initialize element-wise with a unit-flat [0:1) random number
|
| |
|
void | initGaussianKernel (RealKernel &, double x0) |
| | initialize to gaussian kernel exp(-(G x0/2)^2)
|
| |
|
void | initTranslation (ScalarFieldTilde &, const vector3<> &r) |
| | initialize to translation operator exp(-i G.r)
|
| |
|
ScalarFieldTilde | gaussConvolve (const ScalarFieldTilde &, double sigma) |
| | convolve with a gaussian
|
| |
|
ScalarFieldTilde | gaussConvolve (ScalarFieldTilde &&, double sigma) |
| | convolve with a gaussian (destructible input)
|
| |
|
template<typename Func , typename... Args> |
| void | applyFuncGsq (const GridInfo &gInfo, const Func &f, Args...args) |
| | Evaluate a function f(i, Gsq, args...) at each point in reciprocal space indexed by i.
|
| |
|
template<typename Func , typename... Args> |
| void | applyFunc_r (const GridInfo &gInfo, const Func &f, Args...args) |
| | Evaluate a function f(i, r, args...) at each point in real space index by i.
|
| |
|
void | printStats (const ScalarField &X, const char *name, FILE *fp=stdout) |
| | Print mean and standard deviation of array with specified name (debug utility)
|
| |
| template<typename Callable , typename Vec > |
| void | checkSymmetry (Callable *func, const Vec &v1, const Vec &v2, const char *funcName) |
| |
|
template<typename T > |
| void | saveRawBinary (const Tptr &X, FILE *fp) |
| | Save the data in raw binary format to stream.
|
| |
|
template<typename T > |
| void | saveRawBinary (const Tptr &X, const char *filename) |
| | Save the data in raw binary format to file.
|
| |
|
template<typename T > |
| void | loadRawBinary (Tptr &X, FILE *fp) |
| | Load the data in raw binary format from stream.
|
| |
|
template<typename T > |
| void | loadRawBinary (Tptr &X, const char *filename) |
| | Load the data in raw binary format from file.
|
| |
| void | saveDX (const ScalarField &, const char *filenamePrefix) |
| |
std::vector< std::vector
< double > > | sphericalize (const ScalarField *dataR, int nColumns, double drFac=1.0, vector3<> *center=0) |
| |
| void | saveSphericalized (const ScalarField *dataR, int nColumns, const char *filename, double drFac=1.0, vector3<> *center=0) |
| |
| void | saveSphericalized (const ScalarFieldTilde *dataG, int nColumns, const char *filename, double dGFac=1.0) |
| |
|
template<class T , int N> |
| TptrMul | clone (const TptrMul &X) |
| | Clone (NOTE: operator= is by reference for ScalarField multiplets)
|
| |
|
template<class T , int N> |
| void | initZero (TptrMul &X) |
| | Initialize data to 0 and scale factors to 1.
|
| |
|
template<class T , int N> |
| void | nullToZero (TptrMul &X, const GridInfo &gInfo) |
| | Allocate and initialize each component of X to 0 if null.
|
| |
|
template<int N> |
| void | initRandom (RptrMul &X, double cap=0.0) |
| | initialize element-wise with a unit-normal random number (with a cap if cap>0)
|
| |
|
template<int N> |
| void | initRandomFlat (RptrMul &X) |
| | initialize element-wise with a unit-flat [0:1) random number
|
| |
|
template<int N> |
| void | randomize (RptrMul &X) |
| | alternate interface required by Minimizable
|
| |
|
template<class T , int N> |
| TptrMul & | operator*= (TptrMul &in, const TptrMul &other) |
| | Elementwise multiply each component.
|
| |
|
template<class T , int N> |
| TptrMul | operator* (const TptrMul &in1, const TptrMul &in2) |
| | Elementwise multiply each component (preserve inputs)
|
| |
|
template<class T , int N> |
| TptrMul | operator* (TptrMul &&in1, const TptrMul &in2) |
| | Elementwise multiply each component (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator* (const TptrMul &in1, TptrMul &&in2) |
| | Elementwise multiply each component (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator* (TptrMul &&in1, TptrMul &&in2) |
| | Elementwise multiply each component (destructible inputs)
|
| |
|
template<class T , int N> |
| TptrMul & | operator*= (TptrMul &inM, const Tptr &inS) |
| | Elementwise multiply each component.
|
| |
|
template<class T , int N> |
| TptrMul | operator* (const TptrMul &inM, const Tptr &inS) |
| | Elementwise multiply each component (preserve inputs)
|
| |
|
template<class T , int N> |
| TptrMul | operator* (const Tptr &inS, const TptrMul &inM) |
| | Elementwise multiply each component (preserve inputs)
|
| |
|
template<class T , int N> |
| TptrMul | operator* (TptrMul &&inM, const Tptr &inS) |
| | Elementwise multiply each component (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator* (const Tptr &inS, TptrMul &&inM) |
| | Elementwise multiply each component (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul & | operator*= (TptrMul &in, double scaleFac) |
| | Scale.
|
| |
|
template<class T , int N> |
| TptrMul | operator* (const TptrMul &in, double scaleFac) |
| | Scalar multiply (preserve input)
|
| |
|
template<class T , int N> |
| TptrMul | operator* (double scaleFac, const TptrMul &in) |
| | Scalar multiply (preserve input)
|
| |
|
template<class T , int N> |
| TptrMul | operator* (TptrMul &&in, double scaleFac) |
| | Scalar multiply (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator* (double scaleFac, TptrMul &&in) |
| | Scalar multiply (destructible input)
|
| |
|
template<class T > |
| ScalarFieldMultiplet< T, 3 > | operator* (vector3<> v, const Tptr &in) |
| | 3-vector multiply
|
| |
|
template<class T > |
| Tptr | dot (vector3<> v, const ScalarFieldMultiplet< T, 3 > &in) |
| | 3-vector multiply
|
| |
|
template<class T , int N> |
| void | axpy (double alpha, const TptrMul &X, TptrMul &Y) |
| | Linear combine Y += alpha * X.
|
| |
|
template<class T , int N> |
| TptrMul & | operator+= (TptrMul &in, const TptrMul &other) |
| | Increment.
|
| |
|
template<class T , int N> |
| TptrMul & | operator-= (TptrMul &in, const TptrMul &other) |
| | Decrement.
|
| |
|
template<class T , int N> |
| TptrMul | operator+ (const TptrMul &in1, const TptrMul &in2) |
| | Add (preserve inputs)
|
| |
|
template<class T , int N> |
| TptrMul | operator+ (const TptrMul &in1, TptrMul &&in2) |
| | Add (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator+ (TptrMul &&in1, const TptrMul &in2) |
| | Add (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator+ (TptrMul &&in1, TptrMul &&in2) |
| | Add (destructible inputs)
|
| |
|
template<class T , int N> |
| TptrMul | operator- (const TptrMul &in1, const TptrMul &in2) |
| | Subtract (preserve input)
|
| |
|
template<class T , int N> |
| TptrMul | operator- (const TptrMul &in1, TptrMul &&in2) |
| | Subtract (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator- (TptrMul &&in1, const TptrMul &in2) |
| | Subtract (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator- (TptrMul &&in1, TptrMul &&in2) |
| | Subtract (destructible inputs)
|
| |
|
template<class T , int N> |
| TptrMul | operator- (const TptrMul &in) |
| | Negate.
|
| |
|
template<class T , int N> |
| TptrMul | operator- (TptrMul &&in) |
| | Negate.
|
| |
|
template<class T , int N> |
| void | axpy (double alpha, const Tptr &X, TptrMul &Y) |
| | Linear combine Y += alpha * X.
|
| |
|
template<class T , int N> |
| TptrMul & | operator+= (TptrMul &in, const Tptr &other) |
| | Increment.
|
| |
|
template<class T , int N> |
| TptrMul & | operator-= (TptrMul &in, const Tptr &other) |
| | Decrement.
|
| |
|
template<class T , int N> |
| TptrMul | operator+ (const TptrMul &in1, const Tptr &in2) |
| | Add (preserve inputs)
|
| |
|
template<class T , int N> |
| TptrMul | operator+ (const Tptr &in1, const TptrMul &in2) |
| | Add (preserve inputs)
|
| |
|
template<class T , int N> |
| TptrMul | operator+ (const Tptr &in1, TptrMul &&in2) |
| | Add (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator+ (TptrMul &&in1, const Tptr &in2) |
| | Add (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator- (const TptrMul &in1, const Tptr &in2) |
| | Subtract (preserve input)
|
| |
|
template<class T , int N> |
| TptrMul | operator- (const Tptr &in1, const TptrMul &in2) |
| | Subtract (preserve input)
|
| |
|
template<class T , int N> |
| TptrMul | operator- (TptrMul &&in1, const Tptr &in2) |
| | Subtract (destructible input)
|
| |
|
template<class T , int N> |
| TptrMul | operator- (const Tptr &in1, TptrMul &&in2) |
| | Subtract (destructible input)
|
| |
|
template<class T , int N> |
| double | dot (const TptrMul &X, const TptrMul &Y) |
| | Inner product.
|
| |
|
template<class T , int N> |
| double | nrm2 (const TptrMul &X) |
| | 2-norm
|
| |
|
template<class T , int N> |
| double | sum (const TptrMul &X) |
| | Sum of elements.
|
| |
|
vector3 | getGzero (const VectorFieldTilde &X) |
| | return G=0 components
|
| |
|
void | setGzero (const VectorFieldTilde &X, vector3<> v) |
| | set G=0 components
|
| |
|
vector3 | sumComponents (const VectorField &X) |
| | Sum of elements (component-wise)
|
| |
|
ScalarField | lengthSquared (const VectorField &X) |
| | Elementwise length squared.
|
| |
|
ScalarField | dotElemwise (const VectorField &X, const VectorField &Y) |
| | Elementwise dot.
|
| |
|
template<int N> |
| RptrMul & | operator+= (RptrMul &in, double scalar) |
| | Increment by scalar.
|
| |
|
template<int N> |
| RptrMul | operator+ (double scalar, const RptrMul &in) |
| | Add scalar (preserve input)
|
| |
|
template<int N> |
| RptrMul | operator+ (const RptrMul &in, double scalar) |
| | Add scalar (preserve input)
|
| |
|
template<int N> |
| RptrMul | operator+ (double scalar, RptrMul &&in) |
| | Add scalar (destructible input)
|
| |
|
template<int N> |
| RptrMul | operator+ (RptrMul &&in, double scalar) |
| | Add scalar (destructible input)
|
| |
|
template<int N> |
| GptrMul & | operator*= (GptrMul &in, const RealKernel &kernel) |
| | Multiply by kernel.
|
| |
|
template<int N> |
| GptrMul | operator* (const RealKernel &kernel, const GptrMul &in) |
| | Multiply by kernel (preserve input)
|
| |
|
template<int N> |
| GptrMul | operator* (const GptrMul &in, const RealKernel &kernel) |
| | Multiply by kernel (preserve input)
|
| |
|
template<int N> |
| GptrMul | operator* (const RealKernel &kernel, GptrMul &&in) |
| | Multiply by kernel (destructible input)
|
| |
|
template<int N> |
| GptrMul | operator* (GptrMul &&in, const RealKernel &kernel) |
| | Multiply by kernel (destructible input)
|
| |
|
template<int N> |
| GptrMul | O (GptrMul &&X) |
| | Inner product operator (diagonal in PW basis)
|
| |
|
template<int N> |
| GptrMul | O (const GptrMul &X) |
| | Inner product operator (diagonal in PW basis)
|
| |
|
template<int N> |
| RptrMul | I (GptrMul &&X) |
| | Forward transform: PW basis -> real space (destructible input)
|
| |
|
template<int N> |
| GptrMul | J (const RptrMul &X) |
| | Inverse transform: Real space -> PW basis.
|
| |
|
template<int N> |
| GptrMul | Idag (const RptrMul &X) |
| | Forward transform transpose: Real space -> PW basis.
|
| |
|
template<int N> |
| RptrMul | Jdag (GptrMul &&X) |
| | Inverse transform transpose: PW basis -> real space (destructible input)
|
| |
|
template<int N> |
| RptrMul | Jdag (const GptrMul &X) |
| | Inverse transform transpose: PW basis -> real space (preserve input)
|
| |
|
template<int N> |
| RptrMul | I (const GptrMul &X) |
| | Forward transform: PW basis -> real space (preserve input)
|
| |
|
VectorFieldTilde | gradient (const ScalarFieldTilde &) |
| | compute the gradient of a complex field, returns cartesian components
|
| |
|
VectorField | gradient (const ScalarField &) |
| | compute the gradient of a complex field, returns cartesian components
|
| |
|
ScalarFieldTilde | divergence (const VectorFieldTilde &) |
| | compute the divergence of a vector field specified in cartesian components
|
| |
|
ScalarField | divergence (const VectorField &) |
| | compute the divergence of a vector field specified in cartesian components
|
| |
|
TensorFieldTilde | tensorGradient (const ScalarFieldTilde &) |
| | symmetric traceless tensor second derivative of a scalar field
|
| |
|
ScalarFieldTilde | tensorDivergence (const TensorFieldTilde &) |
| | second derivative contraction of a symmetric traceless tensor field
|
| |
|
template<int N> |
| void | printStats (const RptrMul &, const char *name, FILE *fpLog=stdout) |
| | Print mean and standard deviation of each component array with specified name (debug utility)
|
| |