Operators on ScalarField's and ScalarFieldTilde's. More...
#include <core/ScalarField.h>
#include <core/BlasExtra.h>
#include <core/GridInfo.h>
#include <core/LoopMacros.h>
#include <string.h>
Go to the source code of this file.
Macros | |
#define | Tptr std::shared_ptr<T> |
shorthand for writing the template operators (undef'd at end of header) | |
Functions | |
ScalarField | Real (const complexScalarField &) |
real part of a complex scalar field (real-space) | |
ScalarFieldTilde | Real (const complexScalarFieldTilde &) |
real part of a complex scalar field (reciprocal space) | |
ScalarField | Imag (const complexScalarField &) |
imaginary part of a complex scalar field (real-space) | |
ScalarFieldTilde | Imag (const complexScalarFieldTilde &) |
imaginary part of a complex scalar field (reciprocal space) | |
complexScalarField | Complex (const ScalarField &) |
convert real to complex scalar field with zero imaginary part (real-space) | |
complexScalarField | Complex (const ScalarField &re, const ScalarField &im) |
construct complex scalar field fromr eal and imaginary parts (real-space) | |
complexScalarFieldTilde | Complex (const ScalarFieldTilde &) |
convert real to complex scalar field with zero imaginary part (reciprocal-space) | |
ScalarFieldTilde | O (const ScalarFieldTilde &) |
Inner product operator (diagonal in PW basis) | |
ScalarFieldTilde | O (ScalarFieldTilde &&) |
Inner product operator (diagonal in PW basis) | |
complexScalarFieldTilde | O (const complexScalarFieldTilde &) |
Inner product operator (diagonal in PW basis) | |
complexScalarFieldTilde | O (complexScalarFieldTilde &&) |
Inner product operator (diagonal in PW basis) | |
ScalarField | I (const ScalarFieldTilde &, bool compat=false, int nThreads=0) |
Forward transform: PW basis -> real space (preserve input) | |
ScalarField | I (ScalarFieldTilde &&, bool compat=false, int nThreads=0) |
Forward transform: PW basis -> real space (destructible input) | |
complexScalarField | I (const complexScalarFieldTilde &, int nThreads=0) |
Forward transform: PW basis -> real space (preserve input) | |
complexScalarField | I (complexScalarFieldTilde &&, int nThreads=0) |
Forward transform: PW basis -> real space (destructible input) | |
ScalarFieldTilde | J (const ScalarField &, int nThreads=0) |
Inverse transform: Real space -> PW basis. | |
complexScalarFieldTilde | J (const complexScalarField &, int nThreads=0) |
Inverse transform: Real space -> PW basis (preserve input) | |
complexScalarFieldTilde | J (complexScalarField &&, int nThreads=0) |
Inverse transform: Real space -> PW basis (destructible input) | |
ScalarFieldTilde | Idag (const ScalarField &, int nThreads=0) |
Forward transform transpose: Real space -> PW basis. | |
complexScalarFieldTilde | Idag (const complexScalarField &, int nThreads=0) |
Forward transform transpose: Real space -> PW basis (preserve input) | |
complexScalarFieldTilde | Idag (complexScalarField &&, int nThreads=0) |
Forward transform transpose: Real space -> PW basis (destructible input) | |
ScalarField | Jdag (const ScalarFieldTilde &, bool compat=false, int nThreads=0) |
Inverse transform transpose: PW basis -> real space (preserve input) | |
ScalarField | Jdag (ScalarFieldTilde &&, bool compat=false, int nThreads=0) |
Inverse transform transpose: PW basis -> real space (destructible input) | |
complexScalarField | Jdag (const complexScalarFieldTilde &, int nThreads=0) |
Inverse transform transpose: PW basis -> real space (preserve input) | |
complexScalarField | Jdag (complexScalarFieldTilde &&, int nThreads=0) |
Inverse transform transpose: PW basis -> real space (destructible input) | |
ScalarField | JdagOJ (const ScalarField &) |
Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (preserve input) | |
ScalarField | JdagOJ (ScalarField &&) |
Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (destructible input) | |
complexScalarField | JdagOJ (const complexScalarField &) |
Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (preserve input) | |
complexScalarField | JdagOJ (complexScalarField &&) |
Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (destructible input) | |
ScalarFieldTilde | L (const ScalarFieldTilde &) |
Laplacian. | |
ScalarFieldTilde | L (ScalarFieldTilde &&) |
Laplacian. | |
complexScalarFieldTilde | L (const complexScalarFieldTilde &) |
Laplacian. | |
complexScalarFieldTilde | L (complexScalarFieldTilde &&) |
Laplacian. | |
ScalarFieldTilde | Linv (const ScalarFieldTilde &) |
Inverse Laplacian. | |
ScalarFieldTilde | Linv (ScalarFieldTilde &&) |
Inverse Laplacian. | |
complexScalarFieldTilde | Linv (const complexScalarFieldTilde &) |
Inverse Laplacian. | |
complexScalarFieldTilde | Linv (complexScalarFieldTilde &&) |
Inverse Laplacian. | |
void | zeroNyquist (RealKernel &Gdata) |
zeros out all the nyquist components of a real G-kernel | |
void | zeroNyquist (ScalarFieldTilde &Gptr) |
zeros out all the nyquist components of a G-space data array | |
void | zeroNyquist (ScalarField &Rptr) |
zeros out all the nyquist components of an R-space data array | |
ScalarField | exp (const ScalarField &) |
Elementwise exponential (preserve input) | |
ScalarField | exp (ScalarField &&) |
Elementwise exponential (destructible input) | |
ScalarField | log (const ScalarField &) |
Elementwise logarithm (preserve input) | |
ScalarField | log (ScalarField &&) |
Elementwise logarithm (destructible input) | |
ScalarField | sqrt (const ScalarField &) |
Elementwise square root (preserve input) | |
ScalarField | sqrt (ScalarField &&) |
Elementwise square root (destructible input) | |
ScalarField | inv (const ScalarField &) |
Elementwise reciprocal (preserve input) | |
ScalarField | inv (ScalarField &&) |
Elementwise reciprocal (destructible input) | |
ScalarField | pow (const ScalarField &, double alpha) |
Elementwise power (preserve input) | |
ScalarField | pow (ScalarField &&, double alpha) |
Elementwise power (destructible input) | |
template<class T > | |
Tptr | clone (const Tptr &X) |
Clone (NOTE: operator= is by reference for the ScalarField classes) | |
template<class T > | |
Tptr & | operator*= (Tptr &in, double scaleFac) |
Scale. | |
template<class T > | |
Tptr | operator* (const Tptr &in, double scaleFac) |
Scalar multiply (preserve input) | |
template<class T > | |
Tptr | operator* (double scaleFac, const Tptr &in) |
Scalar multiply (preserve input) | |
template<class T > | |
Tptr | operator* (Tptr &&in, double scaleFac) |
Scalar multiply (destructible input) | |
template<class T > | |
Tptr | operator* (double scaleFac, Tptr &&in) |
Scalar multiply (destructible input) | |
template<class T > | |
Tptr | conj (Tptr &&in) |
Generic elementwise conjugate for complex data: | |
template<class T > | |
Tptr | conj (const Tptr &in) |
template<class T > | |
Tptr & | operator*= (Tptr &in, const Tptr &other) |
Generic elementwise multiply for complex data: | |
ScalarField & | operator*= (ScalarField &in, const ScalarField &other) |
Elementwise multiply for real data. | |
template<class T > | |
Tptr | operator* (const Tptr &in1, const Tptr &in2) |
Elementwise multiply (preserve inputs) | |
template<class T > | |
Tptr | operator* (const Tptr &in1, Tptr &&in2) |
Elementwise multiply (destructible input) | |
template<class T > | |
Tptr | operator* (Tptr &&in1, const Tptr &in2) |
Elementwise multiply (destructible input) | |
template<class T > | |
Tptr | operator* (Tptr &&in1, Tptr &&in2) |
Elementwise multiply (destructible inputs) | |
complexScalarField & | operator*= (complexScalarField &, const ScalarField &) |
elementwise multiply | |
complexScalarField | operator* (const complexScalarField &, const ScalarField &) |
elementwise multiply (preserve inputs) | |
complexScalarField | operator* (const ScalarField &, const complexScalarField &) |
elementwise multiply (preserve inputs) | |
complexScalarField | operator* (complexScalarField &&, const ScalarField &) |
elementwise multiply (destructible inputs) | |
complexScalarField | operator* (const ScalarField &, complexScalarField &&) |
elementwise multiply (destructible inputs) | |
ScalarFieldTilde & | operator*= (ScalarFieldTilde &, const RealKernel &) |
Elementwise multiply. | |
ScalarFieldTilde | operator* (const RealKernel &, const ScalarFieldTilde &) |
Elementwise multiply (preserve inputs) | |
ScalarFieldTilde | operator* (const ScalarFieldTilde &, const RealKernel &) |
Elementwise multiply (preserve inputs) | |
ScalarFieldTilde | operator* (const RealKernel &, ScalarFieldTilde &&) |
Elementwise multiply (destructible input) | |
ScalarFieldTilde | operator* (ScalarFieldTilde &&, const RealKernel &) |
Elementwise multiply (destructible input) | |
template<typename T > | |
void | axpy (double alpha, const Tptr &X, Tptr &Y) |
Generic axpy for complex data types (Note: null pointers are treated as zero) | |
void | axpy (double alpha, const ScalarField &X, ScalarField &Y) |
Real data Linear combine: Y += alpha * X (Note: null pointers are treated as zero) | |
template<class T > | |
Tptr & | operator+= (Tptr &in, const Tptr &other) |
Increment. | |
template<class T > | |
Tptr & | operator-= (Tptr &in, const Tptr &other) |
Decrement. | |
template<class T > | |
Tptr | operator+ (const Tptr &in1, const Tptr &in2) |
Add (preserve inputs) | |
template<class T > | |
Tptr | operator+ (const Tptr &in1, Tptr &&in2) |
Add (destructible input) | |
template<class T > | |
Tptr | operator+ (Tptr &&in1, const Tptr &in2) |
Add (destructible input) | |
template<class T > | |
Tptr | operator+ (Tptr &&in1, Tptr &&in2) |
Add (destructible inputs) | |
template<class T > | |
Tptr | operator- (const Tptr &in1, const Tptr &in2) |
Subtract (preserve inputs) | |
template<class T > | |
Tptr | operator- (const Tptr &in1, Tptr &&in2) |
Subtract (destructible input) | |
template<class T > | |
Tptr | operator- (Tptr &&in1, const Tptr &in2) |
Subtract (destructible input) | |
template<class T > | |
Tptr | operator- (Tptr &&in1, Tptr &&in2) |
Subtract (destructible inputs) | |
template<class T > | |
Tptr | operator- (const Tptr &in) |
Negate. | |
template<class T > | |
Tptr | operator- (Tptr &&in) |
Negate. | |
ScalarField & | operator+= (ScalarField &, double) |
Increment by scalar. | |
ScalarField | operator+ (double, const ScalarField &) |
Add scalar (preserve inputs) | |
ScalarField | operator+ (const ScalarField &, double) |
Add scalar (preserve inputs) | |
ScalarField | operator+ (double, ScalarField &&) |
Add scalar (destructible input) | |
ScalarField | operator+ (ScalarField &&, double) |
Add scalar (destructible input) | |
ScalarField & | operator-= (ScalarField &, double) |
Decrement by scalar. | |
ScalarField | operator- (double, const ScalarField &) |
Subtract from scalar (preserve inputs) | |
ScalarField | operator- (const ScalarField &, double) |
Subtract scalar (preserve inputs) | |
ScalarField | operator- (double, ScalarField &&) |
Subtract from scalar (destructible input) | |
ScalarField | operator- (ScalarField &&, double) |
Subtract scalar (destructible input) | |
template<typename T > | |
complex | dot (const Tptr &X, const Tptr &Y) |
template<typename T > | |
double | nrm2 (const Tptr &X) |
template<typename T > | |
complex | sum (const Tptr &X) |
double | dot (const ScalarField &, const ScalarField &) |
Inner product. | |
double | dot (const ScalarFieldTilde &, const ScalarFieldTilde &) |
Inner product. | |
double | nrm2 (const ScalarField &) |
2-norm | |
double | nrm2 (const ScalarFieldTilde &) |
2-norm | |
double | sum (const ScalarField &) |
Sum of elements. | |
double | sum (const ScalarFieldTilde &) |
Equivalent to dot() with a ScalarFieldTilde of all 1s (NOTE: sum(X) != sum(I(X))) | |
double | integral (const ScalarField &) |
Integral in the unit cell (dV times sum()) | |
double | integral (const ScalarFieldTilde &) |
Integral in the unit cell (just fetches the G=0 component with correct prefactor) | |
complex | integral (const complexScalarField &) |
Integral in the unit cell (dV times sum()) | |
complex | integral (const complexScalarFieldTilde &) |
Integral in the unit cell (just fetches the G=0 component with correct prefactor) | |
ScalarFieldTilde | changeGrid (const ScalarFieldTilde &, const GridInfo &gInfoNew) |
ScalarField | changeGrid (const ScalarField &, const GridInfo &gInfoNew) |
complexScalarFieldTilde | changeGrid (const complexScalarFieldTilde &, const GridInfo &gInfoNew) |
complexScalarField | changeGrid (const complexScalarField &, const GridInfo &gInfoNew) |
template<typename T > | |
void | initZero (Tptr &X) |
template<typename T > | |
void | initZero (Tptr &X, const GridInfo &gInfo) |
template<typename T > | |
void | nullToZero (Tptr &X, const GridInfo &gInfo) |
If X is null, allocate and initialize to 0. | |
void | initRandom (ScalarField &, double cap=0.0) |
initialize element-wise with a unit-normal random number (with a cap if cap>0) | |
void | initRandomFlat (ScalarField &) |
initialize element-wise with a unit-flat [0:1) random number | |
void | initGaussianKernel (RealKernel &, double x0) |
initialize to gaussian kernel exp(-(G x0/2)^2) | |
void | initTranslation (ScalarFieldTilde &, const vector3<> &r) |
initialize to translation operator exp(-i G.r) | |
ScalarFieldTilde | gaussConvolve (const ScalarFieldTilde &, double sigma) |
convolve with a gaussian | |
ScalarFieldTilde | gaussConvolve (ScalarFieldTilde &&, double sigma) |
convolve with a gaussian (destructible input) | |
template<typename Func , typename... Args> | |
void | applyFuncGsq (const GridInfo &gInfo, const Func &f, Args...args) |
Evaluate a function f(i, Gsq, args...) at each point in reciprocal space indexed by i. | |
template<typename Func , typename... Args> | |
void | applyFunc_r (const GridInfo &gInfo, const Func &f, Args...args) |
Evaluate a function f(i, r, args...) at each point in real space index by i. | |
void | printStats (const ScalarField &X, const char *name, FILE *fp=stdout) |
Print mean and standard deviation of array with specified name (debug utility) | |
template<typename Callable , typename Vec > | |
void | checkSymmetry (Callable *func, const Vec &v1, const Vec &v2, const char *funcName) |
Operators on ScalarField's and ScalarFieldTilde's.