JDFTx  1.2.1
Simulation grid and data management

Files

file  Operators.h
 Operators on ScalarField's and ScalarFieldTilde's.
 
file  ScalarField.h
 Real and complex scalar fields in real and reciprocal space.
 
file  ScalarFieldIO.h
 I/O utilities for the data arrays.
 
file  VectorField.h
 Generic multiplet of data arrays (and specialized to triplets for vector fields in real/reciprocal space)
 

Classes

struct  FieldData
 Base class for ScalarFieldData and ScalarFieldTildeData. More...
 
struct  ScalarFieldData
 Real space real scalar field data Do not use this data structure directly or from a simple pointer ScalarFieldData*; work only with ScalarField's. The public functions of ScalarFieldData can be accessed with -> from the ScalarField. More...
 
struct  ScalarFieldTildeData
 Reciprocal space real scalar field data Do not use this data structure directly or from a simple pointer ScalarFieldTildeData*; work only with ScalarFieldTilde's. The public functions of ScalarFieldTildeData can be accessed with -> from the ScalarFieldTilde. More...
 
struct  complexScalarFieldData
 Real space complex scalar field data Do not use this data structure directly or from a simple pointer complexScalarFieldData*; work only with complexScalarField's. The public functions of complexScalarFieldData can be accessed with -> from the complexScalarField. More...
 
struct  complexScalarFieldTildeData
 Reciprocal space complex scalar field data Do not use this data structure directly or from a simple pointer complexScalarFieldTildeData*; work only with complexScalarFieldTilde's. The public functions of complexScalarFieldTildeData can be accessed with -> from the complexScalarFieldTilde. More...
 
struct  RealKernel
 Special class for storing real reciprocal-space kernels encountered ever so often for convolutions. More...
 
struct  ScalarFieldMultiplet< T, N >
 Generic multiplet object with overloaded arithmetic. More...
 

Macros

#define Tptr   std::shared_ptr<T>
 shorthand for writing the template operators (undef'd at end of header)
 
#define DECLARE_DATA_PREF_ACCESS
 
#define DECLARE_DATA_ACCESS
 
#define Tptr   std::shared_ptr<T>
 
#define Tptr   std::shared_ptr<T>
 shorthand for writing the template operators (undef'd at end of header)
 
#define TptrMul   ScalarFieldMultiplet<T,N>
 shorthand for the template operators/functions (undef'd at end of file)
 
#define RptrMul   ScalarFieldMultiplet<ScalarFieldData,N>
 shorthand for real-space-only template operators/functions (undef'd at end of file)
 
#define GptrMul   ScalarFieldMultiplet<ScalarFieldTildeData,N>
 shorthand for reciprocal-space-only template operators/functions (undef'd at end of file)
 

Typedefs

typedef std::shared_ptr< ScalarFieldDataScalarField
 A smart reference-counting pointer to ScalarFieldData.
 
typedef std::shared_ptr< ScalarFieldTildeDataScalarFieldTilde
 A smart reference-counting pointer to ScalarFieldTildeData.
 
typedef std::shared_ptr< complexScalarFieldDatacomplexScalarField
 A smart reference-counting pointer to complexScalarFieldData.
 
typedef std::shared_ptr< complexScalarFieldTildeDatacomplexScalarFieldTilde
 A smart reference-counting pointer to complexScalarFieldTildeData.
 
typedef ScalarFieldMultiplet< ScalarFieldData, 3 > VectorField
 Real space vector field.
 
typedef ScalarFieldMultiplet< ScalarFieldTildeData, 3 > VectorFieldTilde
 Reciprocal space vector field.
 
typedef ScalarFieldMultiplet< ScalarFieldData, 5 > TensorField
 Symmetric traceless tensor: real space field.
 
typedef ScalarFieldMultiplet< ScalarFieldTildeData, 5 > TensorFieldTilde
 Symmetric traceless tensor: reciprocal space field.
 

Functions

ScalarField Real (const complexScalarField &)
 real part of a complex scalar field (real-space)
 
ScalarFieldTilde Real (const complexScalarFieldTilde &)
 real part of a complex scalar field (reciprocal space)
 
ScalarField Imag (const complexScalarField &)
 imaginary part of a complex scalar field (real-space)
 
ScalarFieldTilde Imag (const complexScalarFieldTilde &)
 imaginary part of a complex scalar field (reciprocal space)
 
complexScalarField Complex (const ScalarField &)
 convert real to complex scalar field with zero imaginary part (real-space)
 
complexScalarField Complex (const ScalarField &re, const ScalarField &im)
 construct complex scalar field fromr eal and imaginary parts (real-space)
 
complexScalarFieldTilde Complex (const ScalarFieldTilde &)
 convert real to complex scalar field with zero imaginary part (reciprocal-space)
 
ScalarFieldTilde O (const ScalarFieldTilde &)
 Inner product operator (diagonal in PW basis)
 
ScalarFieldTilde O (ScalarFieldTilde &&)
 Inner product operator (diagonal in PW basis)
 
complexScalarFieldTilde O (const complexScalarFieldTilde &)
 Inner product operator (diagonal in PW basis)
 
complexScalarFieldTilde O (complexScalarFieldTilde &&)
 Inner product operator (diagonal in PW basis)
 
ScalarField I (const ScalarFieldTilde &, bool compat=false, int nThreads=0)
 Forward transform: PW basis -> real space (preserve input)
 
ScalarField I (ScalarFieldTilde &&, bool compat=false, int nThreads=0)
 Forward transform: PW basis -> real space (destructible input)
 
complexScalarField I (const complexScalarFieldTilde &, int nThreads=0)
 Forward transform: PW basis -> real space (preserve input)
 
complexScalarField I (complexScalarFieldTilde &&, int nThreads=0)
 Forward transform: PW basis -> real space (destructible input)
 
ScalarFieldTilde J (const ScalarField &, int nThreads=0)
 Inverse transform: Real space -> PW basis.
 
complexScalarFieldTilde J (const complexScalarField &, int nThreads=0)
 Inverse transform: Real space -> PW basis (preserve input)
 
complexScalarFieldTilde J (complexScalarField &&, int nThreads=0)
 Inverse transform: Real space -> PW basis (destructible input)
 
ScalarFieldTilde Idag (const ScalarField &, int nThreads=0)
 Forward transform transpose: Real space -> PW basis.
 
complexScalarFieldTilde Idag (const complexScalarField &, int nThreads=0)
 Forward transform transpose: Real space -> PW basis (preserve input)
 
complexScalarFieldTilde Idag (complexScalarField &&, int nThreads=0)
 Forward transform transpose: Real space -> PW basis (destructible input)
 
ScalarField Jdag (const ScalarFieldTilde &, bool compat=false, int nThreads=0)
 Inverse transform transpose: PW basis -> real space (preserve input)
 
ScalarField Jdag (ScalarFieldTilde &&, bool compat=false, int nThreads=0)
 Inverse transform transpose: PW basis -> real space (destructible input)
 
complexScalarField Jdag (const complexScalarFieldTilde &, int nThreads=0)
 Inverse transform transpose: PW basis -> real space (preserve input)
 
complexScalarField Jdag (complexScalarFieldTilde &&, int nThreads=0)
 Inverse transform transpose: PW basis -> real space (destructible input)
 
ScalarField JdagOJ (const ScalarField &)
 Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (preserve input)
 
ScalarField JdagOJ (ScalarField &&)
 Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (destructible input)
 
complexScalarField JdagOJ (const complexScalarField &)
 Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (preserve input)
 
complexScalarField JdagOJ (complexScalarField &&)
 Evaluate Jdag(O(J())), which avoids 2 fourier transforms in PW basis (destructible input)
 
ScalarFieldTilde L (const ScalarFieldTilde &)
 Laplacian.
 
ScalarFieldTilde L (ScalarFieldTilde &&)
 Laplacian.
 
complexScalarFieldTilde L (const complexScalarFieldTilde &)
 Laplacian.
 
complexScalarFieldTilde L (complexScalarFieldTilde &&)
 Laplacian.
 
ScalarFieldTilde Linv (const ScalarFieldTilde &)
 Inverse Laplacian.
 
ScalarFieldTilde Linv (ScalarFieldTilde &&)
 Inverse Laplacian.
 
complexScalarFieldTilde Linv (const complexScalarFieldTilde &)
 Inverse Laplacian.
 
complexScalarFieldTilde Linv (complexScalarFieldTilde &&)
 Inverse Laplacian.
 
void zeroNyquist (RealKernel &Gdata)
 zeros out all the nyquist components of a real G-kernel
 
void zeroNyquist (ScalarFieldTilde &Gptr)
 zeros out all the nyquist components of a G-space data array
 
void zeroNyquist (ScalarField &Rptr)
 zeros out all the nyquist components of an R-space data array
 
ScalarField exp (const ScalarField &)
 Elementwise exponential (preserve input)
 
ScalarField exp (ScalarField &&)
 Elementwise exponential (destructible input)
 
ScalarField log (const ScalarField &)
 Elementwise logarithm (preserve input)
 
ScalarField log (ScalarField &&)
 Elementwise logarithm (destructible input)
 
ScalarField sqrt (const ScalarField &)
 Elementwise square root (preserve input)
 
ScalarField sqrt (ScalarField &&)
 Elementwise square root (destructible input)
 
ScalarField inv (const ScalarField &)
 Elementwise reciprocal (preserve input)
 
ScalarField inv (ScalarField &&)
 Elementwise reciprocal (destructible input)
 
ScalarField pow (const ScalarField &, double alpha)
 Elementwise power (preserve input)
 
ScalarField pow (ScalarField &&, double alpha)
 Elementwise power (destructible input)
 
template<class T >
Tptr clone (const Tptr &X)
 Clone (NOTE: operator= is by reference for the ScalarField classes)
 
template<class T >
Tptroperator*= (Tptr &in, double scaleFac)
 Scale.
 
template<class T >
Tptr operator* (const Tptr &in, double scaleFac)
 Scalar multiply (preserve input)
 
template<class T >
Tptr operator* (double scaleFac, const Tptr &in)
 Scalar multiply (preserve input)
 
template<class T >
Tptr operator* (Tptr &&in, double scaleFac)
 Scalar multiply (destructible input)
 
template<class T >
Tptr operator* (double scaleFac, Tptr &&in)
 Scalar multiply (destructible input)
 
template<class T >
Tptr conj (Tptr &&in)
 Generic elementwise conjugate for complex data:
 
template<class T >
Tptr conj (const Tptr &in)
 
template<class T >
Tptroperator*= (Tptr &in, const Tptr &other)
 Generic elementwise multiply for complex data:
 
ScalarFieldoperator*= (ScalarField &in, const ScalarField &other)
 Elementwise multiply for real data.
 
template<class T >
Tptr operator* (const Tptr &in1, const Tptr &in2)
 Elementwise multiply (preserve inputs)
 
template<class T >
Tptr operator* (const Tptr &in1, Tptr &&in2)
 Elementwise multiply (destructible input)
 
template<class T >
Tptr operator* (Tptr &&in1, const Tptr &in2)
 Elementwise multiply (destructible input)
 
template<class T >
Tptr operator* (Tptr &&in1, Tptr &&in2)
 Elementwise multiply (destructible inputs)
 
complexScalarFieldoperator*= (complexScalarField &, const ScalarField &)
 elementwise multiply
 
complexScalarField operator* (const complexScalarField &, const ScalarField &)
 elementwise multiply (preserve inputs)
 
complexScalarField operator* (const ScalarField &, const complexScalarField &)
 elementwise multiply (preserve inputs)
 
complexScalarField operator* (complexScalarField &&, const ScalarField &)
 elementwise multiply (destructible inputs)
 
complexScalarField operator* (const ScalarField &, complexScalarField &&)
 elementwise multiply (destructible inputs)
 
ScalarFieldTildeoperator*= (ScalarFieldTilde &, const RealKernel &)
 Elementwise multiply.
 
ScalarFieldTilde operator* (const RealKernel &, const ScalarFieldTilde &)
 Elementwise multiply (preserve inputs)
 
ScalarFieldTilde operator* (const ScalarFieldTilde &, const RealKernel &)
 Elementwise multiply (preserve inputs)
 
ScalarFieldTilde operator* (const RealKernel &, ScalarFieldTilde &&)
 Elementwise multiply (destructible input)
 
ScalarFieldTilde operator* (ScalarFieldTilde &&, const RealKernel &)
 Elementwise multiply (destructible input)
 
template<typename T >
void axpy (double alpha, const Tptr &X, Tptr &Y)
 Generic axpy for complex data types (Note: null pointers are treated as zero)
 
void axpy (double alpha, const ScalarField &X, ScalarField &Y)
 Real data Linear combine: Y += alpha * X (Note: null pointers are treated as zero)
 
template<class T >
Tptroperator+= (Tptr &in, const Tptr &other)
 Increment.
 
template<class T >
Tptroperator-= (Tptr &in, const Tptr &other)
 Decrement.
 
template<class T >
Tptr operator+ (const Tptr &in1, const Tptr &in2)
 Add (preserve inputs)
 
template<class T >
Tptr operator+ (const Tptr &in1, Tptr &&in2)
 Add (destructible input)
 
template<class T >
Tptr operator+ (Tptr &&in1, const Tptr &in2)
 Add (destructible input)
 
template<class T >
Tptr operator+ (Tptr &&in1, Tptr &&in2)
 Add (destructible inputs)
 
template<class T >
Tptr operator- (const Tptr &in1, const Tptr &in2)
 Subtract (preserve inputs)
 
template<class T >
Tptr operator- (const Tptr &in1, Tptr &&in2)
 Subtract (destructible input)
 
template<class T >
Tptr operator- (Tptr &&in1, const Tptr &in2)
 Subtract (destructible input)
 
template<class T >
Tptr operator- (Tptr &&in1, Tptr &&in2)
 Subtract (destructible inputs)
 
template<class T >
Tptr operator- (const Tptr &in)
 Negate.
 
template<class T >
Tptr operator- (Tptr &&in)
 Negate.
 
ScalarFieldoperator+= (ScalarField &, double)
 Increment by scalar.
 
ScalarField operator+ (double, const ScalarField &)
 Add scalar (preserve inputs)
 
ScalarField operator+ (const ScalarField &, double)
 Add scalar (preserve inputs)
 
ScalarField operator+ (double, ScalarField &&)
 Add scalar (destructible input)
 
ScalarField operator+ (ScalarField &&, double)
 Add scalar (destructible input)
 
ScalarFieldoperator-= (ScalarField &, double)
 Decrement by scalar.
 
ScalarField operator- (double, const ScalarField &)
 Subtract from scalar (preserve inputs)
 
ScalarField operator- (const ScalarField &, double)
 Subtract scalar (preserve inputs)
 
ScalarField operator- (double, ScalarField &&)
 Subtract from scalar (destructible input)
 
ScalarField operator- (ScalarField &&, double)
 Subtract scalar (destructible input)
 
template<typename T >
complex dot (const Tptr &X, const Tptr &Y)
 
template<typename T >
double nrm2 (const Tptr &X)
 
template<typename T >
complex sum (const Tptr &X)
 
double dot (const ScalarField &, const ScalarField &)
 Inner product.
 
double dot (const ScalarFieldTilde &, const ScalarFieldTilde &)
 Inner product.
 
double nrm2 (const ScalarField &)
 2-norm
 
double nrm2 (const ScalarFieldTilde &)
 2-norm
 
double sum (const ScalarField &)
 Sum of elements.
 
double sum (const ScalarFieldTilde &)
 Equivalent to dot() with a ScalarFieldTilde of all 1s (NOTE: sum(X) != sum(I(X)))
 
double integral (const ScalarField &)
 Integral in the unit cell (dV times sum())
 
double integral (const ScalarFieldTilde &)
 Integral in the unit cell (just fetches the G=0 component with correct prefactor)
 
complex integral (const complexScalarField &)
 Integral in the unit cell (dV times sum())
 
complex integral (const complexScalarFieldTilde &)
 Integral in the unit cell (just fetches the G=0 component with correct prefactor)
 
ScalarFieldTilde changeGrid (const ScalarFieldTilde &, const GridInfo &gInfoNew)
 
ScalarField changeGrid (const ScalarField &, const GridInfo &gInfoNew)
 
complexScalarFieldTilde changeGrid (const complexScalarFieldTilde &, const GridInfo &gInfoNew)
 
complexScalarField changeGrid (const complexScalarField &, const GridInfo &gInfoNew)
 
template<typename T >
void initZero (Tptr &X)
 
template<typename T >
void initZero (Tptr &X, const GridInfo &gInfo)
 
template<typename T >
void nullToZero (Tptr &X, const GridInfo &gInfo)
 If X is null, allocate and initialize to 0.
 
void initRandom (ScalarField &, double cap=0.0)
 initialize element-wise with a unit-normal random number (with a cap if cap>0)
 
void initRandomFlat (ScalarField &)
 initialize element-wise with a unit-flat [0:1) random number
 
void initGaussianKernel (RealKernel &, double x0)
 initialize to gaussian kernel exp(-(G x0/2)^2)
 
void initTranslation (ScalarFieldTilde &, const vector3<> &r)
 initialize to translation operator exp(-i G.r)
 
ScalarFieldTilde gaussConvolve (const ScalarFieldTilde &, double sigma)
 convolve with a gaussian
 
ScalarFieldTilde gaussConvolve (ScalarFieldTilde &&, double sigma)
 convolve with a gaussian (destructible input)
 
template<typename Func , typename... Args>
void applyFuncGsq (const GridInfo &gInfo, const Func &f, Args...args)
 Evaluate a function f(i, Gsq, args...) at each point in reciprocal space indexed by i.
 
template<typename Func , typename... Args>
void applyFunc_r (const GridInfo &gInfo, const Func &f, Args...args)
 Evaluate a function f(i, r, args...) at each point in real space index by i.
 
void printStats (const ScalarField &X, const char *name, FILE *fp=stdout)
 Print mean and standard deviation of array with specified name (debug utility)
 
template<typename Callable , typename Vec >
void checkSymmetry (Callable *func, const Vec &v1, const Vec &v2, const char *funcName)
 
template<typename T >
void saveRawBinary (const Tptr &X, FILE *fp)
 Save the data in raw binary format to stream.
 
template<typename T >
void saveRawBinary (const Tptr &X, const char *filename)
 Save the data in raw binary format to file.
 
template<typename T >
void loadRawBinary (Tptr &X, FILE *fp)
 Load the data in raw binary format from stream.
 
template<typename T >
void loadRawBinary (Tptr &X, const char *filename)
 Load the data in raw binary format from file.
 
void saveDX (const ScalarField &, const char *filenamePrefix)
 
std::vector< std::vector< double > > sphericalize (const ScalarField *dataR, int nColumns, double drFac=1.0, vector3<> *center=0)
 
void saveSphericalized (const ScalarField *dataR, int nColumns, const char *filename, double drFac=1.0, vector3<> *center=0)
 
void saveSphericalized (const ScalarFieldTilde *dataG, int nColumns, const char *filename, double dGFac=1.0)
 
template<class T , int N>
TptrMul clone (const TptrMul &X)
 Clone (NOTE: operator= is by reference for ScalarField multiplets)
 
template<class T , int N>
void initZero (TptrMul &X)
 Initialize data to 0 and scale factors to 1.
 
template<class T , int N>
void nullToZero (TptrMul &X, const GridInfo &gInfo)
 Allocate and initialize each component of X to 0 if null.
 
template<int N>
void initRandom (RptrMul &X, double cap=0.0)
 initialize element-wise with a unit-normal random number (with a cap if cap>0)
 
template<int N>
void initRandomFlat (RptrMul &X)
 initialize element-wise with a unit-flat [0:1) random number
 
template<int N>
void randomize (RptrMul &X)
 alternate interface required by Minimizable
 
template<class T , int N>
TptrMuloperator*= (TptrMul &in, const TptrMul &other)
 Elementwise multiply each component.
 
template<class T , int N>
TptrMul operator* (const TptrMul &in1, const TptrMul &in2)
 Elementwise multiply each component (preserve inputs)
 
template<class T , int N>
TptrMul operator* (TptrMul &&in1, const TptrMul &in2)
 Elementwise multiply each component (destructible input)
 
template<class T , int N>
TptrMul operator* (const TptrMul &in2, TptrMul &&in1)
 Elementwise multiply each component (destructible input)
 
template<class T , int N>
TptrMul operator* (TptrMul &&in1, TptrMul &&in2)
 Elementwise multiply each component (destructible inputs)
 
template<class T , int N>
TptrMuloperator*= (TptrMul &inM, const Tptr &inS)
 Elementwise multiply each component.
 
template<class T , int N>
TptrMul operator* (const TptrMul &inM, const Tptr &inS)
 Elementwise multiply each component (preserve inputs)
 
template<class T , int N>
TptrMul operator* (const Tptr &inS, const TptrMul &inM)
 Elementwise multiply each component (preserve inputs)
 
template<class T , int N>
TptrMul operator* (TptrMul &&inM, const Tptr &inS)
 Elementwise multiply each component (destructible input)
 
template<class T , int N>
TptrMul operator* (const Tptr &inS, TptrMul &&inM)
 Elementwise multiply each component (destructible input)
 
template<class T , int N>
TptrMuloperator*= (TptrMul &in, double scaleFac)
 Scale.
 
template<class T , int N>
TptrMul operator* (const TptrMul &in, double scaleFac)
 Scalar multiply (preserve input)
 
template<class T , int N>
TptrMul operator* (double scaleFac, const TptrMul &in)
 Scalar multiply (preserve input)
 
template<class T , int N>
TptrMul operator* (TptrMul &&in, double scaleFac)
 Scalar multiply (destructible input)
 
template<class T , int N>
TptrMul operator* (double scaleFac, TptrMul &&in)
 Scalar multiply (destructible input)
 
template<class T >
ScalarFieldMultiplet< T, 3 > operator* (vector3<> v, const Tptr &in)
 3-vector multiply
 
template<class T >
Tptr dot (vector3<> v, const ScalarFieldMultiplet< T, 3 > &in)
 3-vector multiply
 
template<class T , int N>
void axpy (double alpha, const TptrMul &X, TptrMul &Y)
 Linear combine Y += alpha * X.
 
template<class T , int N>
TptrMuloperator+= (TptrMul &in, const TptrMul &other)
 Increment.
 
template<class T , int N>
TptrMuloperator-= (TptrMul &in, const TptrMul &other)
 Decrement.
 
template<class T , int N>
TptrMul operator+ (const TptrMul &in1, const TptrMul &in2)
 Add (preserve inputs)
 
template<class T , int N>
TptrMul operator+ (const TptrMul &in1, TptrMul &&in2)
 Add (destructible input)
 
template<class T , int N>
TptrMul operator+ (TptrMul &&in1, const TptrMul &in2)
 Add (destructible input)
 
template<class T , int N>
TptrMul operator+ (TptrMul &&in1, TptrMul &&in2)
 Add (destructible inputs)
 
template<class T , int N>
TptrMul operator- (const TptrMul &in1, const TptrMul &in2)
 Subtract (preserve input)
 
template<class T , int N>
TptrMul operator- (const TptrMul &in1, TptrMul &&in2)
 Subtract (destructible input)
 
template<class T , int N>
TptrMul operator- (TptrMul &&in1, const TptrMul &in2)
 Subtract (destructible input)
 
template<class T , int N>
TptrMul operator- (TptrMul &&in1, TptrMul &&in2)
 Subtract (destructible inputs)
 
template<class T , int N>
TptrMul operator- (const TptrMul &in)
 Negate.
 
template<class T , int N>
TptrMul operator- (TptrMul &&in)
 Negate.
 
template<class T , int N>
void axpy (double alpha, const Tptr &X, TptrMul &Y)
 Linear combine Y += alpha * X.
 
template<class T , int N>
TptrMuloperator+= (TptrMul &in, const Tptr &other)
 Increment.
 
template<class T , int N>
TptrMuloperator-= (TptrMul &in, const Tptr &other)
 Decrement.
 
template<class T , int N>
TptrMul operator+ (const TptrMul &in1, const Tptr &in2)
 Add (preserve inputs)
 
template<class T , int N>
TptrMul operator+ (const Tptr &in1, const TptrMul &in2)
 Add (preserve inputs)
 
template<class T , int N>
TptrMul operator+ (const Tptr &in1, TptrMul &&in2)
 Add (destructible input)
 
template<class T , int N>
TptrMul operator+ (TptrMul &&in1, const Tptr &in2)
 Add (destructible input)
 
template<class T , int N>
TptrMul operator- (const TptrMul &in1, const Tptr &in2)
 Subtract (preserve input)
 
template<class T , int N>
TptrMul operator- (const Tptr &in1, const TptrMul &in2)
 Subtract (preserve input)
 
template<class T , int N>
TptrMul operator- (TptrMul &&in1, const Tptr &in2)
 Subtract (destructible input)
 
template<class T , int N>
TptrMul operator- (const Tptr &in1, TptrMul &&in2)
 Subtract (destructible input)
 
template<class T , int N>
double dot (const TptrMul &X, const TptrMul &Y)
 Inner product.
 
template<class T , int N>
double nrm2 (const TptrMul &X)
 2-norm
 
template<class T , int N>
double sum (const TptrMul &X)
 Sum of elements.
 
vector3 getGzero (const VectorFieldTilde &X)
 return G=0 components
 
void setGzero (const VectorFieldTilde &X, vector3<> v)
 set G=0 components
 
vector3 sumComponents (const VectorField &X)
 Sum of elements (component-wise)
 
ScalarField lengthSquared (const VectorField &X)
 Elementwise length squared.
 
ScalarField dotElemwise (const VectorField &X, const VectorField &Y)
 Elementwise dot.
 
template<int N>
RptrMuloperator+= (RptrMul &in, double scalar)
 Increment by scalar.
 
template<int N>
RptrMul operator+ (double scalar, const RptrMul &in)
 Add scalar (preserve input)
 
template<int N>
RptrMul operator+ (const RptrMul &in, double scalar)
 Add scalar (preserve input)
 
template<int N>
RptrMul operator+ (double scalar, RptrMul &&in)
 Add scalar (destructible input)
 
template<int N>
RptrMul operator+ (RptrMul &&in, double scalar)
 Add scalar (destructible input)
 
template<int N>
GptrMuloperator*= (GptrMul &in, const RealKernel &kernel)
 Multiply by kernel.
 
template<int N>
GptrMul operator* (const RealKernel &kernel, const GptrMul &in)
 Multiply by kernel (preserve input)
 
template<int N>
GptrMul operator* (const GptrMul &in, const RealKernel &kernel)
 Multiply by kernel (preserve input)
 
template<int N>
GptrMul operator* (const RealKernel &kernel, GptrMul &&in)
 Multiply by kernel (destructible input)
 
template<int N>
GptrMul operator* (GptrMul &&in, const RealKernel &kernel)
 Multiply by kernel (destructible input)
 
template<int N>
GptrMul O (GptrMul &&X)
 Inner product operator (diagonal in PW basis)
 
template<int N>
GptrMul O (const GptrMul &X)
 Inner product operator (diagonal in PW basis)
 
template<int N>
RptrMul I (GptrMul &&X, bool compat=false)
 Forward transform: PW basis -> real space (destructible input)
 
template<int N>
GptrMul J (const RptrMul &X)
 Inverse transform: Real space -> PW basis.
 
template<int N>
GptrMul Idag (const RptrMul &X)
 Forward transform transpose: Real space -> PW basis.
 
template<int N>
RptrMul Jdag (GptrMul &&X, bool compat=false)
 Inverse transform transpose: PW basis -> real space (destructible input)
 
template<int N>
RptrMul Jdag (const GptrMul &X, bool compat=false)
 Inverse transform transpose: PW basis -> real space (preserve input)
 
template<int N>
RptrMul I (const GptrMul &X, bool compat=false)
 Forward transform: PW basis -> real space (preserve input)
 
VectorFieldTilde gradient (const ScalarFieldTilde &)
 compute the gradient of a complex field, returns cartesian components
 
VectorField gradient (const ScalarField &)
 compute the gradient of a complex field, returns cartesian components
 
ScalarFieldTilde divergence (const VectorFieldTilde &)
 compute the divergence of a vector field specified in cartesian components
 
ScalarField divergence (const VectorField &)
 compute the divergence of a vector field specified in cartesian components
 
TensorFieldTilde tensorGradient (const ScalarFieldTilde &)
 symmetric traceless tensor second derivative of a scalar field
 
ScalarFieldTilde tensorDivergence (const TensorFieldTilde &)
 second derivative contraction of a symmetric traceless tensor field
 
template<int N>
void printStats (const RptrMul &, const char *name, FILE *fpLog=stdout)
 Print mean and standard deviation of each component array with specified name (debug utility)
 

Detailed Description

Macro Definition Documentation

#define DECLARE_DATA_ACCESS
Value:
DataType* data(bool shouldAbsorbScale=true) { return (DataType*)FieldData::data(shouldAbsorbScale); } \
const DataType* data(bool shouldAbsorbScale=true) const { return (const DataType*)FieldData::data(shouldAbsorbScale); } \
DataType* dataGpu(bool shouldAbsorbScale=true) { return (DataType*)FieldData::dataGpu(shouldAbsorbScale); } \
const DataType* dataGpu(bool shouldAbsorbScale=true) const { return (const DataType*)FieldData::dataGpu(shouldAbsorbScale); }
complex * dataGpu()
Get a gpu data pointer (must be called from GPU owner thread)
complex * data()
Return a pointer to the actual data Return a CPU pointer to the actual data, will move data from GPU ...
#define DECLARE_DATA_PREF_ACCESS
Value:
DataType* dataPref(bool shouldAbsorbScale=true) { return dataGpu(shouldAbsorbScale); } \
const DataType* dataPref(bool shouldAbsorbScale=true) const { return dataGpu(shouldAbsorbScale); }
std::vector< typename T::DataType * > dataPref(TptrCollection &x)
Extract a std::vector of data pointers from a ScalarFieldArray.
Definition: ScalarFieldArray.h:37

Function Documentation

template<typename Callable , typename Vec >
void checkSymmetry ( Callable *  func,
const Vec &  v1,
const Vec &  v2,
const char *  funcName 
)

Check the symmetry of a linear operator

Template Parameters
CallableAn operator with function call signature Vec Callable(const Vec&)
VecAny operand type representing an element of a vector space
template<typename T >
complex dot ( const Tptr X,
const Tptr Y 
)
Parameters
YGeneric inner product for complex types
template<typename T >
double nrm2 ( const Tptr X)
Parameters
XGeneric 2-norm for complex types
void saveDX ( const ScalarField ,
const char *  filenamePrefix 
)

Save data to a raw binary along with a DataExplorer header

Parameters
filenamePrefixBinary data is saved to filenamePrefix.bin with DataExplorer header filenamePrefix.dx
void saveSphericalized ( const ScalarField dataR,
int  nColumns,
const char *  filename,
double  drFac = 1.0,
vector3<> *  center = 0 
)

Saves an array of real space data pointers to a multicolumn 1D 'sphericalized' file (for gnuplot)

Parameters
dataRThe data to sphericalize and save
nColumnsNumber of ScalarField's in dataR[]
filenameOutput file in which column 1 will be the radius, column 2 to nColumns+1 would be the sphericalized versions of dataR[0 to nColumns-1]
drFacis the spacing in radius as a fraction of the diameter of the sample box (R ./ S) (drFac << 1 is likely to give noisy results, particularly close to r=0)
centerThe origin for spherical coordinates [default = center of box (if null pointer is passed)]
void saveSphericalized ( const ScalarFieldTilde dataG,
int  nColumns,
const char *  filename,
double  dGFac = 1.0 
)

Saves an array of reciprocal space data pointers to a multicolumn 1D 'sphericalized' file (for gnuplot)

Parameters
dataGThe data to sphericalize (about G=0) and save
nColumnsNumber of ScalarFieldTilde's in dataG[]
filenameOutput file in which column 1 will be the radius, column 2 to nColumns+1 would be the sphericalized versions of dataG[0 to nColumns-1]
dGFacis the spacing in radius as a fraction of the diameter of the Brillouin zone (dGFac << 1 is likely to give noisy results, particularly close to G=0)
std::vector< std::vector<double> > sphericalize ( const ScalarField dataR,
int  nColumns,
double  drFac = 1.0,
vector3<> *  center = 0 
)

Spherically average scalar fields about an arbitrary center (with Wigner-Seitz wrapping)

Parameters
dataRThe data to sphericalize and save
nColumnsNumber of ScalarField's in dataR[]
drFacis the spacing in radius as a fraction of the diameter of the sample box (R ./ S) (drFac << 1 is likely to give noisy results, particularly close to r=0)
centerThe origin for spherical coordinates [default = center of box (if null pointer is passed)]
Returns
The first array contains the radial grid, and the subsequent ones the spherically-averaged results, one for each dataR, and the last column contains the weight of the radial grid point
template<typename T >
complex sum ( const Tptr X)
Parameters
XGeneric sum for complex types