JDFTx  1.2.1
operators.h File Reference

Operators specific to the electronic code. More...

#include <electronic/common.h>
#include <electronic/RadialFunction.h>
#include <core/VectorField.h>
#include <core/ScalarFieldArray.h>
#include <core/matrix3.h>

Go to the source code of this file.

Functions

void removePhase (size_t N, complex *data, double &meanPhase, double &sigmaPhase, double &rmsImagErr)
 
ScalarFieldTilde D (const ScalarFieldTilde &, int iDir)
 compute the gradient in the iDir'th cartesian direction
 
ScalarFieldTilde DD (const ScalarFieldTilde &, int iDir, int jDir)
 second derivative along iDir'th and jDir'th cartesian directions
 
ScalarFieldTildeArray lGradient (const ScalarFieldTilde &, int l)
 spherical tensor gradient of order l (2l+1 outputs, multiplied by Ylm(Ghat) (iG)^l)
 
ScalarFieldTilde lDivergence (const ScalarFieldTildeArray &, int l)
 spherical tensor divergence of order l (2l+1 inputs, multiplied by Ylm(Ghat) (iG)^l, and summed)
 
void multiplyBlochPhase (complexScalarField &, const vector3<> &k)
 Multiply complex scalar field by Block phase for wave-vector k (in reciprocal lattice coordinates)
 
ScalarField pointGroupGather (const ScalarField &, const matrix3< int > &mMesh)
 
complexScalarField pointGroupGather (const complexScalarField &, const matrix3< int > &mMesh)
 
ScalarField pointGroupScatter (const ScalarField &, const matrix3< int > &mMesh)
 
complexScalarField pointGroupScatter (const complexScalarField &, const matrix3< int > &mMesh)
 
ScalarField radialFunction (const GridInfo &gInfo, const RadialFunctionG &f, vector3<> r0)
 Create a spherically symmetric real scalar field centered at lattice coordinates r0, given its radial fourier transform f.
 
void radialFunctionG (const RadialFunctionG &f, RealKernel &Kernel)
 Create a spherically symmetric scalar G-space kernel given its radial form f.
 
ScalarFieldTilde radialFunctionG (const GridInfo &gInfo, const RadialFunctionG &f, vector3<> r0)
 Create a spherically symmetric G-space scalar field centered at lattice coordinates r0 given its radial form f.
 
ScalarFieldTilde operator* (const RadialFunctionG &, const ScalarFieldTilde &)
 Convolve a scalar field by a radial function (preserve input)
 
ScalarFieldTilde operator* (const RadialFunctionG &, ScalarFieldTilde &&)
 Convolve a scalar field by a radial function (destructible input)
 
VectorFieldTilde operator* (const RadialFunctionG &, const VectorFieldTilde &)
 Convolve a vector field by a radial function (preserve input)
 
VectorFieldTilde operator* (const RadialFunctionG &, VectorFieldTilde &&)
 Convolve a vector field by a radial function (destructible input)
 
ColumnBundle Idag_DiagV_I (const ColumnBundle &C, const ScalarFieldArray &V)
 
ColumnBundle L (const ColumnBundle &Y)
 Apply Laplacian.
 
ColumnBundle Linv (const ColumnBundle &Y)
 Apply Laplacian inverse.
 
ColumnBundle O (const ColumnBundle &Y, std::vector< matrix > *VdagY=0)
 Apply overlap (and optionally retrieve pseudopotential projections for later reuse)
 
ColumnBundle D (const ColumnBundle &Y, int iDir)
 Compute the cartesian gradient of a column bundle in direction# iDir.
 
ColumnBundle DD (const ColumnBundle &Y, int iDir, int jDir)
 Compute second spatial derivative of a column bundle along directions# iDir, jDir.
 
void precond_inv_kinetic (ColumnBundle &Y, double KErollover)
 Apply inverse kinetic preconditioner (Roughly inv((k+G)^2/2)) in-place.
 
diagMatrix diagDot (const ColumnBundle &X, const ColumnBundle &Y)
 compute diag(X^Y) efficiently (avoid the off-diagonals)
 
void precond_inv_kinetic_band (ColumnBundle &Y, const diagMatrix &KEref)
 In-place inverse kinetic preconditioner with band-by-band KE reference (Used by BandDavidson)
 
ColumnBundle translate (ColumnBundle &&, vector3<> dr)
 translate a column-bundle by dr in lattice coordinates (destructible input)
 
ColumnBundle translate (const ColumnBundle &, vector3<> dr)
 translate a column-bundle by dr in lattice coordinates (preserve input)
 
void translateColumns (ColumnBundle &, const vector3<> *dr)
 translate each column of a column bundle by a different dr (in-place)
 
ColumnBundle switchBasis (const ColumnBundle &, const Basis &)
 return wavefunction projected to a different basis
 
complex traceinner (const diagMatrix &F, const ColumnBundle &X, const ColumnBundle &Y)
 Return trace(F*X^Y)
 
ScalarFieldArray diagouterI (const diagMatrix &F, const ColumnBundle &X, int nDensities, const GridInfo *gInfoOut=0)
 

Detailed Description

Operators specific to the electronic code.

Function Documentation

ScalarFieldArray diagouterI ( const diagMatrix F,
const ColumnBundle X,
int  nDensities,
const GridInfo gInfoOut = 0 
)

Returns diag((I*X)*F*(I*X)^) (Compute density from an orthonormal wavefunction ColumnBundle with some fillings F). nDensities is the number of scalar field in the output and controls how spin/spinors are handled: 1: return total density regardless of spin / spinor nature 2: return spin density in X.qnum->index()'th component of the output (valid for non-spinor X only) 4: return spin density-matrix (valid for spinor X only) If gInfoOut is specified, function ensures that the output is changed to that grid (in case tighter wfns grid is in use)

ColumnBundle Idag_DiagV_I ( const ColumnBundle C,
const ScalarFieldArray V 
)

Return Idag V .* I C (evaluated columnwise) The handling of the spin structure of V parallels that of diagouterI, with V.size() taking the role of nDensities

ScalarField pointGroupGather ( const ScalarField ,
const matrix3< int > &  mMesh 
)

Resample scalar field by gathering from coordinates rotated by point group element specified in mesh coordinates. Hermitian conjugate of pointGroupScatter

ScalarField pointGroupScatter ( const ScalarField ,
const matrix3< int > &  mMesh 
)

Resample scalar field by scattering to coordinates rotated by point group element specified in mesh coordinates. Hermitian conjugate of pointGroupGather

void removePhase ( size_t  N,
complex data,
double &  meanPhase,
double &  sigmaPhase,
double &  rmsImagErr 
)

Convert a complex wavefunction to a real one with optimum phase choice Store the phase statistics before conversion in meanPhase and sigmaPhase and the relative rms imaginary part truncated during conversion in rmsImagErr (Useful for getting real wavefunctions in gamma point only calculations or Wannier functions)